correspondence with the r-card hands allowing repetition
from the original k-card deck. The reader can supply the
correspondence.

C. Communication Systems Development:
Minimizing Range Code Acquisition Time,
R. C. Tausworthe

1. Introduction

The application of composite coding to ranging schemes
(Refs. 1, 5 and 6) has produced systems capable of very
accurate, relatively quick distance measurements, with
large unambiguous range intervals. Optimization of these
codes (Ref. 2) without constraint leads to a set of require-
ments on the component sequences not physically consis-
tent, but doesindicatewhatthe important features are. For
example, an unconstrained optimum would require all
the cornponents to be short PN sequences of the same
period; but short codes combine to make longer ones only
when their periods are different, and pseudonoise se-
quences only exist for periods of the form p = 4N-3.

Still, the optimization shows that the components should
be short, relatively prime in length, and have distinguish-
able correlation functions.

Based on the supposition that all periods are equal,
optimum choice of the encoding logic leads to a code hav-
ing equal cross-correlation characteristics with each com-
ponent sequence. Since the periods cannot be actually the
same, there may sometimes be a better encoding logic than
the one producing equal component correlations. This
article investigates coding to minimize acquisition time
under the constraint that all periods be different.

2. Probability of Correct Acquisition

The probability that a particular component having
two-level autocorrelation with period is correctly acquired
by maximum-likelihood techniques is given by

P= —\% f_:}ﬁc {—% [1+ exf(x+8)] }de

in which erf ( ) is the error function (Ref. 7) and 8 is
defined by

— ST
- Cmax I_Cmin/Cmax —_—
8= Coud e

[}
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The parameters appearing in 8 are

S _ The signal-power-to-noise-spectral-density

ﬁo- ratio
T= The integration time-per-phase

Cuin,Cmax= The minimum and maximum normalized
cross-correlation values between the com-
posite code and the component sequence

The total time required to correlate each phase sequen-
tially is

_ (No/S) pB*
C?nax (1 - Cmin/(jmax)2

which for an n-component code, yields a total acquisition
time of

piB;
[l_cmin(i /Cmaxli)]2

Tao = T, = (No/9) Y. &

max{t)

The probability of correct acquisition is

Pacq - ﬁPI

i=1

Under the assumption that it is desirable to acquire each
component with equal likelihood, we set P; = P; and have

1/
P,':Pm»:;

3. Minimization of the Acquisition Time

Suppose we are given a desired P,.; to achieve this,
we compute each P;, and translate this into a value of 8;.
Suppose also that we elect to use PN sequences, for these
maximize (1—Cuin/Crax) and thus tend to minimize Ty
Under this latter assumption,

1~ Chin/Crmax = (1+p)/p

Since T, decreases monotonically with each C,.,, we
must find a set of Conax(i), Subject to realizability, that are
mutually as large as possible. It is known (Ref. 2) that the
Crax(iy are constrained by the relation

3 Cuusctr ~ 2 5 700) [ = 2 x ]
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where f(x) is the encoding logic function, f(x) = =+ 1, x is
a binary (0,1) vector truth-table variable, and ||x|| denotes
the number of ones in x. (The approximation is due only
to an imbalance of + 1’s in the component sequences.)
Note for example that SCy.. is greatest when f(x) is a
majority-vote logic, i.e. when f(x) = 1if ||x|| < n/2 and
f(x) = —1if [|x||> n/2. Tie votes when n'is even are
immaterial to the sum, but change individual values of

Cmax(i)-

We shall fix the sum 3Craxiy = o to find how each
Cunaxcs) should be related to the period p;. Using standard
Lagrange multiplier techniques, we define & = T,
+ A (ZCmaxcir — a). Then optimum Crax ;) values satisfy

(il :—z(&)[ﬁ_] £ pa=o
a‘Jmax(i) S (1+p)2 Cmax(i)

Hence we see that each Ciai) is related to the period p;
of its component sequence by

- 2 Pi
Cmax(i) e K»Bi/s (1+pi)2/3

For some constant K, evaluated to be

— 2/3 Pi -
K=a [; Bi/ (l_l_pi)z/zj'

The optimum value of T,., can now be computed:

-

r = () {5 [ rvt + oo ]}

i=1

= a(No/S)/K?

Example: Assume we are given the following:

n==~6 ps = 11

No/S = —9.6db = .11 p, =15
P; = 099,i=1,---6 ps = 19
P =2 Ps = 23
p:=17
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The 82 compute to be

B2 = 5.41 82 =973
g2 = 8.35 g =10.14
Bz =918 Bz = 1047

In the usual case, and we shall assume it here, the first
component having length p, = 2 is acquired differently
than the rest; we shall further suppose that for practical
reasons it is necessary to maintain 25% correlation with
this component. With o set equal to its maximum value of
1.875, we can modify the previous theory to include opti-
mization over the remaining five correlation values.

First we compute

K= 1.625
Zsj B pi/ (L+ps)
i=2

= 522 — 0068

and then the desired values of correlation:

Cmax(l) == 0.250 Cmax(4) = 0.333
Cmax(z) - 0.234 Cmax(S) - 0-368
Crnaxesy = 0.290 Crnaxsy = 0.399

These are the values we would like to have if the encod-
ing logic were capable of giving a continuous range of
values. Being discrete, however, the set of correlation
values most nearly equal to those above is obtained
from the encoding logic whose truth-table appears in
Table 1, which has

Craxry = 0.2616 A, = 00116
Cnax(zy = 0.2498 A= 00158
Cmax(sy = 0.3104 As = 00204
Craxesy = 0.3143 A, = — 00187
Crnaxesy = 0.3694 As= 00014
Crax(sy = 0.3918 As = — 0.0072

—an outstanding fit. In fact, the C.., values above are
better than the desired ones listed previously; this is due
to the fact that the constraint I Cpax = a is only approxi-
mate, being affected by the imbalance of + 1’s in the
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Table 1. An optimum ranging encoding logic

X3 X2 Xz Xi X5 X fix} Xy Xz Xz X3 X5 Xe f(x)
0 0 0 O ¢ [+] 1 0 0 0 0 O 0
o 0 0 0 1 0 1 0 0 o 1 o
0 0 0 0 1 O 0 i1 0 0 0 1 © 0
o 0 0 0 1 1 0 1 0 0 0 1 1 [+]
o 0 0 1t o0 0O 0 1 0 01 0 O 0
0o 0 0 1t 0 1 0 1 0 0 1 o0 1 0
o 0o 0o 1 1 O 0 i 0 0 1 1 O 1
o 0 o0 1 1 1 1 1. 0 0 v 1 1 1
o 0 1 0 0 0 o 1 01 0 0 O [+]
o 0 1 o0 0 1 (¢} 1 0 1 0 0 1 0
o 0O ' 0 1 ¢ 0 i 0 1 0 1 O 1
o 1 0 1 1 1 i 0o 1 0o 1 1 1
0 0 1 1 0 o 0 i o 1 1 0 O (4]
o 0 1 1 o0 1 1 1 0 1 1 0 1 1
o 0o 1 1 1 0 1 1 0 1 1 1 0 1
9 o 1 1 1 1 1 T 01 1T 1t 1 1
o 1 0 0 0 O (o} 1 1. 0o 0 0 O ¢}
o 1 0 0 0 1 0 1 1. 0 0 0 1 1
o 1 0 0 1 O 0 11 0 0 1 O [+]
o 1 0 o0 1 1 1 1 1 0 0o 1 1 1
0 1 0 1t 0 O ] Tt 1t o1 0 O 0
¢ 1 0 1 0 1 1 1 1 01 0 1 1
o 1 ¢ 1 v 0 (¢} 1T 1t 0 v 1 o 1
o 1 0o 1t 1 1 1 11 0 1 1 1 1
o 1. 1 0 0 O (4} 1 1 1 0 0 O 1
o 1 1 0 0 1 0 1T 1. 1 6 0 1 1
0 1 1 0 1 O 0o T 1 1 0 1 O i
o 1 1 o0 1 1 1 i1 1 0 1 1 1
o 1 1.1 0 o 0 1 11 1 0 O 1
o 1 1 1 0 1 1 L R R R S ¢ B | 1
o 1 1 1 1 0 1 i 1 1 1 1 0 1
o 1 1 1t 1 1 1 T 1 1T 1 11 1

component sequences. The values listed were obtained
with each PN sequence having an excess —1.

Acquisition time of the latter five components is about
617 sec; the “ideal” values would require 621 sec; and a
symmetric majority logic would require 735 seconds!
The modified majority logic, in this case, affords a saving
of almost two minutes over a symmetric majority.
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D. Communication Systems Development:

Cycle Slipping in Phase-Locked Loops,
R. C. Tausworthe

1. Introduction

Cycle slipping in phase-locked receivers is an observed
phenomenon that is unpredictable and not accounted for
by linear theories of loop operation. Viterbi (Ref. 8)
was able to solve a Fokker-Planck equation to arrive at
the expected time from lock to a slipped cycle for a first-
order loop; however, extensions to higher-order loops by
these methods have not, as yet, been forthcoming.

This article shows that the expected first-slip time of
a loop of arbitrary order satisfies a linear differential
equation reducible to one of the first order, to which
formal solutions, at least, are easily given. The deriva-
tion follows directly from a random-walk model not re-
stricted to processes of the Markov type. Computation
of an exact solution involves being able to evaluate a
certain conditional expectation, which ordinarily requires
a prior solution for the probability {unction of the phase-
error process. For the first-order loop, however, the ex-
pectation can be evaluated directly without computing
p($, $), so the method yields the exact result. Rather than
aftempting to compute p(¢, ¢), for higher-order loops
(which is still an unsolved problem), this article presents
an approximate evaluation of the expectation valid for
loops of any order. Specific behavior of second-order loop
cycle-slipping is evaluated.

2. The Random-Walk Model

Let {x(t)} be a stochastic process, and let ¢, be any
observed time such that for a particular sample function
x(t) we have |x(t,) | < A, where A is a given constant.
Let +{x,) be the time required for the sample function
starting from x, at £, to reach or pass the limits = A for

the first time; that is, +{x,) is the random variable defined
by

(%) = sup {=; | x(fo + 8)] < Aforall0 <8 <7} (1)
Given t, and x,, the mean value of +(x,) will be denoted
T(x,) = E {r(x,) { ty, %o} (2)

Now let Af > 0 be given, and define Ax, = x{t, + A?)
— x(t,); naturally Ax, is a random variable depending on
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